Effect of Pin1 or microtubule binding on dephosphorylation of FTDP-17 mutant Tau.
نویسندگان
چکیده
Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wild-type Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidyl-prolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wild-type Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.
منابع مشابه
Mutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model.
Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) is an autosomal dominant neurodegenerative disorder caused by mutations in the gene that encodes for tau, a microtubule-binding protein. Neuropathologically the disease is characterized by extensive neuronal loss in the frontal and temporal lobes and the filamentous accumulation of hyperphosphorylated tau. The R406W miss...
متن کاملMolecular Implication of PP2A and Pin1 in the Alzheimer's Disease Specific Hyperphosphorylation of Tau
BACKGROUND Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD) related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2...
متن کاملThe peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease
Since hyperphosphorylation of protein tau is a crucial event in Alzheimer’s disease, additional mechanisms besides the interplay of kinase and phosphatase activities are investigated, such as the effect of the peptidyl prolyl cis/trans isomerase Pin1. This isomerase was shown to bind and isomerize phosphorylated protein tau, thereby restoring the microtubule associated protein function of tau a...
متن کاملFrontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) Authors: Doctors
Keywords Disease name Excluded diseases Diagnosis criteria / definition Differential diagnosis Frequency Clinical description Laboratory findings Management including treatment Etiology Diagnostic methods Genetic counseling Keywords References Abstract Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is an autosomal dominant neurodegenerative disorder caused by mutatio...
متن کاملFTDP-17 mutations compromise the ability of tau to regulate microtubule dynamics in cells.
The neural microtubule-associated protein Tau binds directly to microtubules and regulates their dynamic behavior. In addition to being required for normal development, maintenance, and function of the nervous system, Tau is associated with several neurodegenerative diseases, including Alzheimer disease. One group of neurodegenerative dementias known as FTDP-17 (fronto-temporal dementia with Pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 25 شماره
صفحات -
تاریخ انتشار 2009